[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7. The Release Process

Making a release is more than just bundling up your source files in a tar file and putting it up for FTP. You should set up your software so that it can be configured to run on a variety of systems. Your Makefile should conform to the GNU standards described below, and your directory layout should also conform to the standards discussed below. Doing so makes it easy to include your package into the larger framework of all GNU software.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.1 How Configuration Should Work

Each GNU distribution should come with a shell script named configure. This script is given arguments which describe the kind of machine and system you want to compile the program for.

The configure script must record the configuration options so that they affect compilation.

One way to do this is to make a link from a standard name such as ‘config.h’ to the proper configuration file for the chosen system. If you use this technique, the distribution should not contain a file named ‘config.h’. This is so that people won’t be able to build the program without configuring it first.

Another thing that configure can do is to edit the Makefile. If you do this, the distribution should not contain a file named ‘Makefile’. Instead, it should include a file ‘Makefile.in’ which contains the input used for editing. Once again, this is so that people won’t be able to build the program without configuring it first.

If configure does write the ‘Makefile’, then ‘Makefile’ should have a target named ‘Makefile’ which causes configure to be rerun, setting up the same configuration that was set up last time. The files that configure reads should be listed as dependencies of ‘Makefile’.

All the files which are output from the configure script should have comments at the beginning explaining that they were generated automatically using configure. This is so that users won’t think of trying to edit them by hand.

The configure script should write a file named ‘config.status’ which describes which configuration options were specified when the program was last configured. This file should be a shell script which, if run, will recreate the same configuration.

The configure script should accept an option of the form ‘--srcdir=dirname’ to specify the directory where sources are found (if it is not the current directory). This makes it possible to build the program in a separate directory, so that the actual source directory is not modified.

If the user does not specify ‘--srcdir’, then configure should check both ‘.’ and ‘..’ to see if it can find the sources. If it finds the sources in one of these places, it should use them from there. Otherwise, it should report that it cannot find the sources, and should exit with nonzero status.

Usually the easy way to support ‘--srcdir’ is by editing a definition of VPATH into the Makefile. Some rules may need to refer explicitly to the specified source directory. To make this possible, configure can add to the Makefile a variable named srcdir whose value is precisely the specified directory.

The configure script should also take an argument which specifies the type of system to build the program for. This argument should look like this:

 
cpu-company-system

For example, a Sun 3 might be ‘m68k-sun-sunos4.1’.

The configure script needs to be able to decode all plausible alternatives for how to describe a machine. Thus, ‘sun3-sunos4.1’ would be a valid alias. For many programs, ‘vax-dec-ultrix’ would be an alias for ‘vax-dec-bsd’, simply because the differences between Ultrix and BSD are rarely noticeable, but a few programs might need to distinguish them.

There is a shell script called ‘config.sub’ that you can use as a subroutine to validate system types and canonicalize aliases.

Other options are permitted to specify in more detail the software or hardware present on the machine, and include or exclude optional parts of the package:

--enable-feature[=parameter]

Configure the package to build and install an optional user-level facility called feature. This allows users to choose which optional features to include. Giving an optional parameter of ‘no’ should omit feature, if it is built by default.

No ‘--enable’ option should ever cause one feature to replace another. No ‘--enable’ option should ever substitute one useful behavior for another useful behavior. The only proper use for ‘--enable’ is for questions of whether to build part of the program or exclude it.

--with-package

The package package will be installed, so configure this package to work with package.

Possible values of package include ‘gnu-as’ (or ‘gas’), ‘gnu-ld’, ‘gnu-libc’, ‘gdb’, ‘x’, and ‘x-toolkit’.

Do not use a ‘--with’ option to specify the file name to use to find certain files. That is outside the scope of what ‘--with’ options are for.

All configure scripts should accept all of these “detail” options, whether or not they make any difference to the particular package at hand. In particular, they should accept any option that starts with ‘--with-’ or ‘--enable-’. This is so users will be able to configure an entire GNU source tree at once with a single set of options.

You will note that the categories ‘--with-’ and ‘--enable-’ are narrow: they do not provide a place for any sort of option you might think of. That is deliberate. We want to limit the possible configuration options in GNU software. We do not want GNU programs to have idiosyncratic configuration options.

Packages that perform part of the compilation process may support cross-compilation. In such a case, the host and target machines for the program may be different.

The configure script should normally treat the specified type of system as both the host and the target, thus producing a program which works for the same type of machine that it runs on.

To configure a cross-compiler, cross-assembler, or what have you, you should specify a target different from the host, using the configure option ‘--target=targettype’. The syntax for targettype is the same as for the host type. So the command would look like this:

 
./configure hosttype --target=targettype

Programs for which cross-operation is not meaningful need not accept the ‘--target’ option, because configuring an entire operating system for cross-operation is not a meaningful operation.

Bootstrapping a cross-compiler requires compiling it on a machine other than the host it will run on. Compilation packages accept a configuration option ‘--build=buildtype’ for specifying the configuration on which you will compile them, but the configure script should normally guess the build machine type (using ‘config.guess’), so this option is probably not necessary. The host and target types normally default from the build type, so in bootstrapping a cross-compiler you must specify them both explicitly.

Some programs have ways of configuring themselves automatically. If your program is set up to do this, your configure script can simply ignore most of its arguments.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2 Makefile Conventions

This describes conventions for writing the Makefiles for GNU programs. Using Automake will help you write a Makefile that follows these conventions.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.1 General Conventions for Makefiles

Every Makefile should contain this line:

 
SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the environment. (This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit rules, and this sometimes creates confusion or misbehavior. So it is a good idea to set the suffix list explicitly using only the suffixes you need in the particular Makefile, like this:

 
.SUFFIXES:
.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes which may be subject to implicit rules in this Makefile.

Don’t assume that ‘.’ is in the path for command execution. When you need to run programs that are a part of your package during the make, please make sure that it uses ‘./’ if the program is built as part of the make or ‘$(srcdir)/’ if the file is an unchanging part of the source code. Without one of these prefixes, the current search path is used.

The distinction between ‘./’ (the build directory) and ‘$(srcdir)/’ (the source directory) is important because users can build in a separate directory using the ‘--srcdir’ option to ‘configure’. A rule of the form:

 
foo.1 : foo.man sedscript
        sed -e sedscript foo.man > foo.1

will fail when the build directory is not the source directory, because ‘foo.man’ and ‘sedscript’ are in the source directory.

When using GNU make, relying on ‘VPATH’ to find the source file will work in the case where there is a single dependency file, since the make automatic variable ‘$<’ will represent the source file wherever it is. (Many versions of make set ‘$<’ only in implicit rules.) A Makefile target like

 
foo.o : bar.c
        $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

 
foo.o : bar.c
        $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has multiple dependencies, using an explicit ‘$(srcdir)’ is the easiest way to make the rule work well. For example, the target above for ‘foo.1’ is best written as:

 
foo.1 : foo.man sedscript
        sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

GNU distributions usually contain some files which are not source files—for example, Info files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally appear in the source directory, they should always appear in the source directory, not in the build directory. So Makefile rules to update them should put the updated files in the source directory.

However, if a file does not appear in the distribution, then the Makefile should not put it in the source directory, because building a program in ordinary circumstances should not modify the source directory in any way.

Try to make the build and installation targets, at least (and all their subtargets) work correctly with a parallel make.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as configure) to run in sh, not in csh. Don’t use any special features of ksh or bash.

The configure script and the Makefile rules for building and installation should not use any utilities directly except these:

 
cat cmp cp diff echo egrep expr false grep install-info
ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true

The compression program gzip can be used in the dist rule.

Stick to the generally supported options for these programs. For example, don’t use ‘mkdir -p’, convenient as it may be, because most systems don’t support it.

It is a good idea to avoid creating symbolic links in makefiles, since a few systems don’t support them.

The Makefile rules for building and installation can also use compilers and related programs, but should do so via make variables so that the user can substitute alternatives. Here are some of the programs we mean:

 
ar bison cc flex install ld ldconfig lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:

 
$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or ldconfig, you should make sure nothing bad happens if the system does not have the program in question. Arrange to ignore an error from that command, and print a message before the command to tell the user that failure of this command does not mean a problem. (The Autoconf ‘AC_PROG_RANLIB’ macro can help with this.)

If you use symbolic links, you should implement a fallback for systems that don’t have symbolic links.

Additional utilities that can be used via Make variables are:

 
chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular systems where you know those utilities exist.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.3 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables. Thus, if you use Bison, have a variable named BISON whose default value is set with ‘BISON = bison’, and refer to it with $(BISON) whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be referred to through variables in this way, since users don’t need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply options to the program. Append ‘FLAGS’ to the program-name variable name to get the options variable name—for example, BISONFLAGS. (The names CFLAGS for the C compiler, YFLAGS for yacc, and LFLAGS for lex, are exceptions to this rule, but we keep them because they are standard.) Use CPPFLAGS in any compilation command that runs the preprocessor, and use LDFLAGS in any compilation command that does linking as well as in any direct use of ld.

If there are C compiler options that must be used for proper compilation of certain files, do not include them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves. Instead, arrange to pass the necessary options to the C compiler independently of CFLAGS, by writing them explicitly in the compilation commands or by defining an implicit rule, like this:

 
CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:
        $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required for proper compilation. You can consider it a default that is only recommended. If the package is set up so that it is compiled with GCC by default, then you might as well include ‘-O’ in the default value of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler options, so the user can use CFLAGS to override the others.

CFLAGS should be used in every invocation of the C compiler, both those which do compilation and those which do linking.

Every Makefile should define the variable INSTALL, which is the basic command for installing a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and INSTALL_DATA. (The default for INSTALL_PROGRAM should be $(INSTALL); the default for INSTALL_DATA should be ${INSTALL} -m 644.) Then it should use those variables as the commands for actual installation, for executables and nonexecutables respectively. Use these variables as follows:

 
$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Optionally, you may prepend the value of DESTDIR to the target filename. Doing this allows the installer to create a snapshot of the installation to be copied onto the real target filesystem later. Do not set the value of DESTDIR in your Makefile, and do not include it in any installed files. With support for DESTDIR, the above examples become:

 
$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo
$(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument of the installation commands. Use a separate command for each file to be installed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.4 Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to install in a nonstandard place. The standard names for these variables are described below. They are based on a standard filesystem layout; variants of it are used in SVR4, FreeBSD, OpenBSD, GNU/Linux, and other modern operating systems.

These two variables set the root for the installation. All the other installation directories should be subdirectories of one of these two, and nothing should be directly installed into these two directories.

prefix

A prefix used in constructing the default values of the variables listed below. The default value of prefix should be ‘/usr/local’. When building the complete GNU system, the prefix will be empty and ‘/usr’ will be a symbolic link to ‘/’. (If you are using Autoconf, write it as ‘@prefix@’.)

Running ‘make install’ with a different value of prefix from the one used to build the program should not recompile the program.

exec_prefix

A prefix used in constructing the default values of some of the variables listed below. The default value of exec_prefix should be $(prefix). (If you are using Autoconf, write it as ‘@exec_prefix@’.)

Generally, $(exec_prefix) is used for directories that contain machine-specific files (such as executables and subroutine libraries), while $(prefix) is used directly for other directories.

Running ‘make install’ with a different value of exec_prefix from the one used to build the program should not recompile the program.

Executable programs are installed in one of the following directories.

bindir

The directory for installing executable programs that users can run. This should normally be ‘/usr/local/bin’, but write it as ‘$(exec_prefix)/bin’. (If you are using Autoconf, write it as ‘@bindir@’.)

sbindir

The directory for installing executable programs that can be run from the shell, but are only generally useful to system administrators. This should normally be ‘/usr/local/sbin’, but write it as ‘$(exec_prefix)/sbin’. (If you are using Autoconf, write it as ‘@sbindir@’.)

libexecdir

The directory for installing executable programs to be run by other programs rather than by users. This directory should normally be ‘/usr/local/libexec’, but write it as ‘$(exec_prefix)/libexec’. (If you are using Autoconf, write it as ‘@libexecdir@’.)

Data files used by the program during its execution are divided into categories in two ways.

This makes for six different possibilities. However, we want to discourage the use of architecture-dependent files, aside from object files and libraries. It is much cleaner to make other data files architecture-independent, and it is generally not hard.

Therefore, here are the variables Makefiles should use to specify directories:

datadir

The directory for installing read-only architecture independent data files. This should normally be ‘/usr/local/share’, but write it as ‘$(prefix)/share’. (If you are using Autoconf, write it as ‘@datadir@’.) As a special exception, see ‘$(infodir)’ and ‘$(includedir)’ below.

sysconfdir

The directory for installing read-only data files that pertain to a single machine–that is to say, files for configuring a host. Mailer and network configuration files, ‘/etc/passwd’, and so forth belong here. All the files in this directory should be ordinary ASCII text files. This directory should normally be ‘/usr/local/etc’, but write it as ‘$(prefix)/etc’. (If you are using Autoconf, write it as ‘@sysconfdir@’.)

Do not install executables here in this directory (they probably belong in ‘$(libexecdir)’ or ‘$(sbindir)’). Also do not install files that are modified in the normal course of their use (programs whose purpose is to change the configuration of the system excluded). Those probably belong in ‘$(localstatedir)’.

sharedstatedir

The directory for installing architecture-independent data files which the programs modify while they run. This should normally be ‘/usr/local/com’, but write it as ‘$(prefix)/com’. (If you are using Autoconf, write it as ‘@sharedstatedir@’.)

localstatedir

The directory for installing data files which the programs modify while they run, and that pertain to one specific machine. Users should never need to modify files in this directory to configure the package’s operation; put such configuration information in separate files that go in ‘$(datadir)’ or ‘$(sysconfdir)’. ‘$(localstatedir)’ should normally be ‘/usr/local/var’, but write it as ‘$(prefix)/var’. (If you are using Autoconf, write it as ‘@localstatedir@’.)

libdir

The directory for object files and libraries of object code. Do not install executables here, they probably ought to go in ‘$(libexecdir)’ instead. The value of libdir should normally be ‘/usr/local/lib’, but write it as ‘$(exec_prefix)/lib’. (If you are using Autoconf, write it as ‘@libdir@’.)

infodir

The directory for installing the Info files for this package. By default, it should be ‘/usr/local/info’, but it should be written as ‘$(prefix)/info’. (If you are using Autoconf, write it as ‘@infodir@’.)

lispdir

The directory for installing any Emacs Lisp files in this package. By default, it should be ‘/usr/local/share/emacs/site-lisp’, but it should be written as ‘$(prefix)/share/emacs/site-lisp’.

If you are using Autoconf, write the default as ‘@lispdir@’. In order to make ‘@lispdir@’ work, you need the following lines in your ‘configure.in’ file:

 
lispdir='${datadir}/emacs/site-lisp'
AC_SUBST(lispdir)
includedir

The directory for installing header files to be included by user programs with the C ‘#include’ preprocessor directive. This should normally be ‘/usr/local/include’, but write it as ‘$(prefix)/include’. (If you are using Autoconf, write it as ‘@includedir@’.)

Most compilers other than GCC do not look for header files in directory ‘/usr/local/include’. So installing the header files this way is only useful with GCC. Sometimes this is not a problem because some libraries are only really intended to work with GCC. But some libraries are intended to work with other compilers. They should install their header files in two places, one specified by includedir and one specified by oldincludedir.

oldincludedir

The directory for installing ‘#include’ header files for use with compilers other than GCC. This should normally be ‘/usr/include’. (If you are using Autoconf, you can write it as ‘@oldincludedir@’.)

The Makefile commands should check whether the value of oldincludedir is empty. If it is, they should not try to use it; they should cancel the second installation of the header files.

A package should not replace an existing header in this directory unless the header came from the same package. Thus, if your Foo package provides a header file ‘foo.h’, then it should install the header file in the oldincludedir directory if either (1) there is no ‘foo.h’ there or (2) the ‘foo.h’ that exists came from the Foo package.

To tell whether ‘foo.h’ came from the Foo package, put a magic string in the file—part of a comment—and grep for that string.

Unix-style man pages are installed in one of the following:

mandir

The top-level directory for installing the man pages (if any) for this package. It will normally be ‘/usr/local/man’, but you should write it as ‘$(prefix)/man’. (If you are using Autoconf, write it as ‘@mandir@’.)

man1dir

The directory for installing section 1 man pages. Write it as ‘$(mandir)/man1’.

man2dir

The directory for installing section 2 man pages. Write it as ‘$(mandir)/man2

Don’t make the primary documentation for any GNU software be a man page. Write a manual in Texinfo instead. Man pages are just for the sake of people running GNU software on Unix, which is a secondary application only.

manext

The file name extension for the installed man page. This should contain a period followed by the appropriate digit; it should normally be ‘.1’.

man1ext

The file name extension for installed section 1 man pages.

man2ext

The file name extension for installed section 2 man pages.

Use these names instead of ‘manext’ if the package needs to install man pages in more than one section of the manual.

And finally, you should set the following variable:

srcdir

The directory for the sources being compiled. The value of this variable is normally inserted by the configure shell script. (If you are using Autconf, use ‘srcdir = @srcdir@’.)

For example:

 
# Common prefix for installation directories.
# NOTE: This directory must exist when you start the install.
prefix = /usr/local
exec_prefix = $(prefix)
# Where to put the executable for the command `gcc'.
bindir = $(exec_prefix)/bin
# Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
# Where to put the Info files.
infodir = $(prefix)/info

If your program installs a large number of files into one of the standard user-specified directories, it might be useful to group them into a subdirectory particular to that program. If you do this, you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the variables listed above. The idea of having a uniform set of variable names for installation directories is to enable the user to specify the exact same values for several different GNU packages. In order for this to be useful, all the packages must be designed so that they will work sensibly when the user does so.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.5 Standard Targets for Users

All GNU programs should have the following targets in their Makefiles:

all

Compile the entire program. This should be the default target. This target need not rebuild any documentation files; Info files should normally be included in the distribution, and DVI files should be made only when explicitly asked for.

By default, the Make rules should compile and link with ‘-g’, so that executable programs have debugging symbols. Users who don’t mind being helpless can strip the executables later if they wish.

install

Compile the program and copy the executables, libraries, and so on to the file names where they should reside for actual use. If there is a simple test to verify that a program is properly installed, this target should run that test.

Do not strip executables when installing them. Devil-may-care users can use the install-strip target to do that.

If possible, write the install target rule so that it does not modify anything in the directory where the program was built, provided ‘make all’ has just been done. This is convenient for building the program under one user name and installing it under another.

The commands should create all the directories in which files are to be installed, if they don’t already exist. This includes the directories specified as the values of the variables prefix and exec_prefix, as well as all subdirectories that are needed. One way to do this is by means of an installdirs target as described below.

Use ‘-’ before any command for installing a man page, so that make will ignore any errors. This is in case there are systems that don’t have the Unix man page documentation system installed.

The way to install Info files is to copy them into ‘$(infodir)’ with $(INSTALL_DATA) (see section Variables for Specifying Commands), and then run the install-info program if it is present. install-info is a program that edits the Info ‘dir’ file to add or update the menu entry for the given Info file; it is part of the Texinfo package. Here is a sample rule to install an Info file:

 
$(DESTDIR)$(infodir)/foo.info: foo.info
        $(POST_INSTALL)
# There may be a newer info file in . than in srcdir.
        -if test -f foo.info; then d=.; \
         else d=$(srcdir); fi; \
        $(INSTALL_DATA) $$d/foo.info $(DESTDIR)$@; \
# Run install-info only if it exists.
# Use `if' instead of just prepending `-' to the
# line so we notice real errors from install-info.
# We use `$(SHELL) -c' because some shells do not
# fail gracefully when there is an unknown command.
        if $(SHELL) -c 'install-info --version' \
           >/dev/null 2>&1; then \
          install-info --dir-file=$(DESTDIR)$(infodir)/dir \
                       $(DESTDIR)$(infodir)/foo.info; \
        else true; fi

When writing the install target, you must classify all the commands into three categories: normal ones, pre-installation commands and post-installation commands. See section Install Command Categories.

uninstall

Delete all the installed files—the copies that the ‘install’ target creates.

This rule should not modify the directories where compilation is done, only the directories where files are installed.

The uninstallation commands are divided into three categories, just like the installation commands. See section Install Command Categories.

install-strip

Like install, but strip the executable files while installing them. In simple cases, this target can use the install target in a simple way:

 
install-strip:
        $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \
                install

But if the package installs scripts as well as real executables, the install-strip target can’t just refer to the install target; it has to strip the executables but not the scripts.

install-strip should not strip the executables in the build directory which are being copied for installation. It should only strip the copies that are installed.

Normally we do not recommend stripping an executable unless you are sure the program has no bugs. However, it can be reasonable to install a stripped executable for actual execution while saving the unstripped executable elsewhere in case there is a bug.

clean

Delete all files from the current directory that are normally created by building the program. Don’t delete the files that record the configuration. Also preserve files that could be made by building, but normally aren’t because the distribution comes with them.

Delete ‘.dvi’ files here if they are not part of the distribution.

distclean

Delete all files from the current directory that are created by configuring or building the program. If you have unpacked the source and built the program without creating any other files, ‘make distclean’ should leave only the files that were in the distribution.

mostlyclean

Like ‘clean’, but may refrain from deleting a few files that people normally don’t want to recompile. For example, the ‘mostlyclean’ target for GCC does not delete ‘libgcc.a’, because recompiling it is rarely necessary and takes a lot of time.

maintainer-clean

Delete almost everything from the current directory that can be reconstructed with this Makefile. This typically includes everything deleted by distclean, plus more: C source files produced by Bison, tags tables, Info files, and so on.

The reason we say “almost everything” is that running the command ‘make maintainer-clean’ should not delete ‘configure’ even if ‘configure’ can be remade using a rule in the Makefile. More generally, ‘make maintainer-clean’ should not delete anything that needs to exist in order to run ‘configure’ and then begin to build the program. This is the only exception; maintainer-clean should delete everything else that can be rebuilt.

The ‘maintainer-clean’ target is intended to be used by a maintainer of the package, not by ordinary users. You may need special tools to reconstruct some of the files that ‘make maintainer-clean’ deletes. Since these files are normally included in the distribution, we don’t take care to make them easy to reconstruct. If you find you need to unpack the full distribution again, don’t blame us.

To help make users aware of this, the commands for the special maintainer-clean target should start with these two:

 
@echo 'This command is intended for maintainers to use; it'
@echo 'deletes files that may need special tools to rebuild.'
TAGS

Update a tags table for this program.

info

Generate any Info files needed. The best way to write the rules is as follows:

 
info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
        $(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It should run the makeinfo program, which is part of the Texinfo distribution.

Normally a GNU distribution comes with Info files, and that means the Info files are present in the source directory. Therefore, the Make rule for an info file should update it in the source directory. When users build the package, ordinarily Make will not update the Info files because they will already be up to date.

dvi

Generate DVI files for all Texinfo documentation. For example:

 
dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
        $(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile. It should run the program texi2dvi, which is part of the Texinfo distribution.(1) Alternatively, write just the dependencies, and allow GNU make to provide the command.

dist

Create a distribution tar file for this program. The tar file should be set up so that the file names in the tar file start with a subdirectory name which is the name of the package it is a distribution for. This name can include the version number.

For example, the distribution tar file of GCC version 1.40 unpacks into a subdirectory named ‘gcc-1.40’.

The easiest way to do this is to create a subdirectory appropriately named, use ln or cp to install the proper files in it, and then tar that subdirectory.

Compress the tar file with gzip. For example, the actual distribution file for GCC version 1.40 is called ‘gcc-1.40.tar.gz’.

The dist target should explicitly depend on all non-source files that are in the distribution, to make sure they are up to date in the distribution. See section Making Releases.

check

Perform self-tests (if any). The user must build the program before running the tests, but need not install the program; you should write the self-tests so that they work when the program is built but not installed.

The following targets are suggested as conventional names, for programs in which they are useful.

installcheck

Perform installation tests (if any). The user must build and install the program before running the tests. You should not assume that ‘$(bindir)’ is in the search path.

installdirs

It’s useful to add a target named ‘installdirs’ to create the directories where files are installed, and their parent directories. There is a script called ‘mkinstalldirs’ which is convenient for this; you can find it in the Texinfo package. You can use a rule like this:

 
# Make sure all installation directories (e.g. $(bindir))
# actually exist by making them if necessary.
installdirs: mkinstalldirs
        $(srcdir)/mkinstalldirs $(bindir) $(datadir) \
                                $(libdir) $(infodir) \
                                $(mandir)

or, if you wish to support DESTDIR,

 
# Make sure all installation directories (e.g. $(bindir))
# actually exist by making them if necessary.
installdirs: mkinstalldirs
        $(srcdir)/mkinstalldirs \
            $(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \
            $(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \
            $(DESTDIR)$(mandir)

This rule should not modify the directories where compilation is done. It should do nothing but create installation directories.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.2.6 Install Command Categories

When writing the install target, you must classify all the commands into three categories: normal ones, pre-installation commands and post-installation commands.

Normal commands move files into their proper places, and set their modes. They may not alter any files except the ones that come entirely from the package they belong to.

Pre-installation and post-installation commands may alter other files; in particular, they can edit global configuration files or data bases.

Pre-installation commands are typically executed before the normal commands, and post-installation commands are typically run after the normal commands.

The most common use for a post-installation command is to run install-info. This cannot be done with a normal command, since it alters a file (the Info directory) which does not come entirely and solely from the package being installed. It is a post-installation command because it needs to be done after the normal command which installs the package’s Info files.

Most programs don’t need any pre-installation commands, but we have the feature just in case it is needed.

To classify the commands in the install rule into these three categories, insert category lines among them. A category line specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make variable, plus an optional comment at the end. There are three variables you can use, one for each category; the variable name specifies the category. Category lines are no-ops in ordinary execution because these three Make variables are normally undefined (and you should not define them in the makefile).

Here are the three possible category lines, each with a comment that explains what it means:

 
        $(PRE_INSTALL)     # Pre-install commands follow.
        $(POST_INSTALL)    # Post-install commands follow.
        $(NORMAL_INSTALL)  # Normal commands follow.

If you don’t use a category line at the beginning of the install rule, all the commands are classified as normal until the first category line. If you don’t use any category lines, all the commands are classified as normal.

These are the category lines for uninstall:

 
        $(PRE_UNINSTALL)     # Pre-uninstall commands follow.
        $(POST_UNINSTALL)    # Post-uninstall commands follow.
        $(NORMAL_UNINSTALL)  # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting entries from the Info directory.

If the install or uninstall target has any dependencies which act as subroutines of installation, then you should start each dependency’s commands with a category line, and start the main target’s commands with a category line also. This way, you can ensure that each command is placed in the right category regardless of which of the dependencies actually run.

Pre-installation and post-installation commands should not run any programs except for these:

 
[ basename bash cat chgrp chmod chown cmp cp dd diff echo
egrep expand expr false fgrep find getopt grep gunzip gzip
hostname install install-info kill ldconfig ln ls md5sum
mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee
test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the sake of making binary packages. Typically a binary package contains all the executables and other files that need to be installed, and has its own method of installing them—so it does not need to run the normal installation commands. But installing the binary package does need to execute the pre-installation and post-installation commands.

Programs to build binary packages work by extracting the pre-installation and post-installation commands. Here is one way of extracting the pre-installation commands:

 
make -n install -o all \
      PRE_INSTALL=pre-install \
      POST_INSTALL=post-install \
      NORMAL_INSTALL=normal-install \
  | gawk -f pre-install.awk

where the file ‘pre-install.awk’ could contain this:

 
$0 ~ /^\t[ \t]*(normal_install|post_install)[ \t]*$/ {on = 0}
on {print $0}
$0 ~ /^\t[ \t]*pre_install[ \t]*$/ {on = 1}

The resulting file of pre-installation commands is executed as a shell script as part of installing the binary package.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.3 Making Releases

Package the distribution of Foo version 69.96 up in a gzipped tar file with the name ‘foo-69.96.tar.gz’. It should unpack into a subdirectory named ‘foo-69.96’.

Building and installing the program should never modify any of the files contained in the distribution. This means that all the files that form part of the program in any way must be classified into source files and non-source files. Source files are written by humans and never changed automatically; non-source files are produced from source files by programs under the control of the Makefile.

The distribution should contain a file named ‘README’ which gives the name of the package, and a general description of what it does. It is also good to explain the purpose of each of the first-level subdirectories in the package, if there are any. The ‘README’ file should either state the version number of the package, or refer to where in the package it can be found.

The ‘README’ file should refer to the file ‘INSTALL’, which should contain an explanation of the installation procedure.

The ‘README’ file should also refer to the file which contains the copying conditions. The GNU GPL, if used, should be in a file called ‘COPYING’. If the GNU LGPL is used, it should be in a file called ‘COPYING.LIB’.

Naturally, all the source files must be in the distribution. It is okay to include non-source files in the distribution, provided they are up-to-date and machine-independent, so that building the distribution normally will never modify them. We commonly include non-source files produced by Bison, lex, TeX, and makeinfo; this helps avoid unnecessary dependencies between our distributions, so that users can install whichever packages they want to install.

Non-source files that might actually be modified by building and installing the program should never be included in the distribution. So if you do distribute non-source files, always make sure they are up to date when you make a new distribution.

Make sure that the directory into which the distribution unpacks (as well as any subdirectories) are all world-writable (octal mode 777). This is so that old versions of tar which preserve the ownership and permissions of the files from the tar archive will be able to extract all the files even if the user is unprivileged.

Make sure that all the files in the distribution are world-readable.

Make sure that no file name in the distribution is more than 14 characters long. Likewise, no file created by building the program should have a name longer than 14 characters. The reason for this is that some systems adhere to a foolish interpretation of the POSIX standard, and refuse to open a longer name, rather than truncating as they did in the past.

Don’t include any symbolic links in the distribution itself. If the tar file contains symbolic links, then people cannot even unpack it on systems that don’t support symbolic links. Also, don’t use multiple names for one file in different directories, because certain file systems cannot handle this and that prevents unpacking the distribution.

Try to make sure that all the file names will be unique on MS-DOS. A name on MS-DOS consists of up to 8 characters, optionally followed by a period and up to three characters. MS-DOS will truncate extra characters both before and after the period. Thus, ‘foobarhacker.c’ and ‘foobarhacker.o’ are not ambiguous; they are truncated to ‘foobarha.c’ and ‘foobarha.o’, which are distinct.

Include in your distribution a copy of the ‘texinfo.tex’ you used to test print any ‘*.texinfo’ or ‘*.texi’ files.

Likewise, if your program uses small GNU software packages like regex, getopt, obstack, or termcap, include them in the distribution file. Leaving them out would make the distribution file a little smaller at the expense of possible inconvenience to a user who doesn’t know what other files to get.


[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated by Aidan Kehoe on December 27, 2016 using texi2html 1.82.